Copied to
clipboard

G = C522Q16order 400 = 24·52

1st semidirect product of C52 and Q16 acting via Q16/C4=C22

metabelian, supersoluble, monomial

Aliases: C522Q16, C20.14D10, Dic10.2D5, C4.10D52, C52(C5⋊Q16), (C5×C10).11D4, C10.9(C5⋊D4), (C5×C20).6C22, C527C8.1C2, (C5×Dic10).1C2, C2.5(C522D4), SmallGroup(400,69)

Series: Derived Chief Lower central Upper central

C1C5×C20 — C522Q16
C1C5C52C5×C10C5×C20C5×Dic10 — C522Q16
C52C5×C10C5×C20 — C522Q16
C1C2C4

Generators and relations for C522Q16
 G = < a,b,c,d | a5=b5=c8=1, d2=c4, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, bd=db, dcd-1=c-1 >

2C5
2C5
10C4
10C4
2C10
2C10
5Q8
5Q8
25C8
2Dic5
2Dic5
2C20
2C20
10C20
10C20
25Q16
5C5×Q8
5C5×Q8
5C52C8
5C52C8
10C52C8
10C52C8
2C5×Dic5
2C5×Dic5
5C5⋊Q16
5C5⋊Q16

Smallest permutation representation of C522Q16
On 80 points
Generators in S80
(1 37 66 10 77)(2 78 11 67 38)(3 39 68 12 79)(4 80 13 69 40)(5 33 70 14 73)(6 74 15 71 34)(7 35 72 16 75)(8 76 9 65 36)(17 60 42 29 50)(18 51 30 43 61)(19 62 44 31 52)(20 53 32 45 63)(21 64 46 25 54)(22 55 26 47 57)(23 58 48 27 56)(24 49 28 41 59)
(1 66 77 37 10)(2 11 38 78 67)(3 68 79 39 12)(4 13 40 80 69)(5 70 73 33 14)(6 15 34 74 71)(7 72 75 35 16)(8 9 36 76 65)(17 29 60 50 42)(18 43 51 61 30)(19 31 62 52 44)(20 45 53 63 32)(21 25 64 54 46)(22 47 55 57 26)(23 27 58 56 48)(24 41 49 59 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 60 5 64)(2 59 6 63)(3 58 7 62)(4 57 8 61)(9 30 13 26)(10 29 14 25)(11 28 15 32)(12 27 16 31)(17 33 21 37)(18 40 22 36)(19 39 23 35)(20 38 24 34)(41 74 45 78)(42 73 46 77)(43 80 47 76)(44 79 48 75)(49 71 53 67)(50 70 54 66)(51 69 55 65)(52 68 56 72)

G:=sub<Sym(80)| (1,37,66,10,77)(2,78,11,67,38)(3,39,68,12,79)(4,80,13,69,40)(5,33,70,14,73)(6,74,15,71,34)(7,35,72,16,75)(8,76,9,65,36)(17,60,42,29,50)(18,51,30,43,61)(19,62,44,31,52)(20,53,32,45,63)(21,64,46,25,54)(22,55,26,47,57)(23,58,48,27,56)(24,49,28,41,59), (1,66,77,37,10)(2,11,38,78,67)(3,68,79,39,12)(4,13,40,80,69)(5,70,73,33,14)(6,15,34,74,71)(7,72,75,35,16)(8,9,36,76,65)(17,29,60,50,42)(18,43,51,61,30)(19,31,62,52,44)(20,45,53,63,32)(21,25,64,54,46)(22,47,55,57,26)(23,27,58,56,48)(24,41,49,59,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,60,5,64)(2,59,6,63)(3,58,7,62)(4,57,8,61)(9,30,13,26)(10,29,14,25)(11,28,15,32)(12,27,16,31)(17,33,21,37)(18,40,22,36)(19,39,23,35)(20,38,24,34)(41,74,45,78)(42,73,46,77)(43,80,47,76)(44,79,48,75)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72)>;

G:=Group( (1,37,66,10,77)(2,78,11,67,38)(3,39,68,12,79)(4,80,13,69,40)(5,33,70,14,73)(6,74,15,71,34)(7,35,72,16,75)(8,76,9,65,36)(17,60,42,29,50)(18,51,30,43,61)(19,62,44,31,52)(20,53,32,45,63)(21,64,46,25,54)(22,55,26,47,57)(23,58,48,27,56)(24,49,28,41,59), (1,66,77,37,10)(2,11,38,78,67)(3,68,79,39,12)(4,13,40,80,69)(5,70,73,33,14)(6,15,34,74,71)(7,72,75,35,16)(8,9,36,76,65)(17,29,60,50,42)(18,43,51,61,30)(19,31,62,52,44)(20,45,53,63,32)(21,25,64,54,46)(22,47,55,57,26)(23,27,58,56,48)(24,41,49,59,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,60,5,64)(2,59,6,63)(3,58,7,62)(4,57,8,61)(9,30,13,26)(10,29,14,25)(11,28,15,32)(12,27,16,31)(17,33,21,37)(18,40,22,36)(19,39,23,35)(20,38,24,34)(41,74,45,78)(42,73,46,77)(43,80,47,76)(44,79,48,75)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72) );

G=PermutationGroup([[(1,37,66,10,77),(2,78,11,67,38),(3,39,68,12,79),(4,80,13,69,40),(5,33,70,14,73),(6,74,15,71,34),(7,35,72,16,75),(8,76,9,65,36),(17,60,42,29,50),(18,51,30,43,61),(19,62,44,31,52),(20,53,32,45,63),(21,64,46,25,54),(22,55,26,47,57),(23,58,48,27,56),(24,49,28,41,59)], [(1,66,77,37,10),(2,11,38,78,67),(3,68,79,39,12),(4,13,40,80,69),(5,70,73,33,14),(6,15,34,74,71),(7,72,75,35,16),(8,9,36,76,65),(17,29,60,50,42),(18,43,51,61,30),(19,31,62,52,44),(20,45,53,63,32),(21,25,64,54,46),(22,47,55,57,26),(23,27,58,56,48),(24,41,49,59,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,60,5,64),(2,59,6,63),(3,58,7,62),(4,57,8,61),(9,30,13,26),(10,29,14,25),(11,28,15,32),(12,27,16,31),(17,33,21,37),(18,40,22,36),(19,39,23,35),(20,38,24,34),(41,74,45,78),(42,73,46,77),(43,80,47,76),(44,79,48,75),(49,71,53,67),(50,70,54,66),(51,69,55,65),(52,68,56,72)]])

43 conjugacy classes

class 1  2 4A4B4C5A5B5C5D5E5F5G5H8A8B10A10B10C10D10E10F10G10H20A···20L20M···20T
order124445555555588101010101010101020···2020···20
size1122020222244445050222244444···420···20

43 irreducible representations

dim111222224444
type+++++-+-+-
imageC1C2C2D4D5Q16D10C5⋊D4C5⋊Q16D52C522D4C522Q16
kernelC522Q16C527C8C5×Dic10C5×C10Dic10C52C20C10C5C4C2C1
# reps112142484448

Matrix representation of C522Q16 in GL6(𝔽41)

100000
010000
001000
000100
0000640
000010
,
100000
010000
0004000
001600
000010
000001
,
12290000
12120000
00153900
00312600
00002023
00002021
,
21380000
38200000
0018600
00352300
0000640
00003535

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,1,0,0,0,0,40,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,0,0,0,0,29,12,0,0,0,0,0,0,15,31,0,0,0,0,39,26,0,0,0,0,0,0,20,20,0,0,0,0,23,21],[21,38,0,0,0,0,38,20,0,0,0,0,0,0,18,35,0,0,0,0,6,23,0,0,0,0,0,0,6,35,0,0,0,0,40,35] >;

C522Q16 in GAP, Magma, Sage, TeX

C_5^2\rtimes_2Q_{16}
% in TeX

G:=Group("C5^2:2Q16");
// GroupNames label

G:=SmallGroup(400,69);
// by ID

G=gap.SmallGroup(400,69);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,48,73,55,218,116,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^8=1,d^2=c^4,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C522Q16 in TeX

׿
×
𝔽